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The effects of site conditions on ground motions
W.D. Liam Finn'

ABSTRACT

The more important contributions by seismologists and geotechnical eNgINEers over
the last 10 years to knowledge of effects of site conditions on ground motions are reviewed
and the implications for seismic design are examined. The selection of material for review

is based on a judgement of its importance to engineering practice.

INTRODUCTION

T'he estimation of site specific ground motion parameters for seismic design or
microzonation studies is one of the more complex and challenging problems of earthquake

engineering,

The etfects of local site conditions on the incident wave field have been the focus of
major studies by both seismologists and geotechnical engineers. Until the 1980’s, these
studies proceeded relatively independently with little interaction and with an apparent
lack of agreement on some important issues. For example, following the pioneering
studies of ground response during the Niigata earthquake of 1964 by Seed and Idriss
(1969), geotechnical engineers have been convinced of the importance of nonlinear effects
at most soil sites during strong shaking. Since the introduction of the SHAKE program by
Schnabel et al. (1972), nonlinear site effects have been taken into account routinely in
engineering practice. Yet in a study of the applicability of weak motion amplification
factors to the strong motions recorded during the 1989 Loma Prieta earthquake Aki and
Ta-Liang Teng ( 1991) concluded that their study had detected the "pervasive nonlinear

effect at sediment sites for the first time seismologically”.

Geotechnical engineers have always taken a rather restricted view of site effects,
relying almost exclusively on 1-D analysis. They have routinely ignored the effects of
surface and buried topography on ground motions which reviews by Aki (1988), Silva
(1989) and Faccioli (1991) have shown can be significant from both the seismological and

éngineering points of view.
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Fig. 2 SH Fourier Transfer Functions to Homogeneous Half-Space Outcrop Motions
(after Geli et al., 1988). ‘
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Amplification of motions at the crest of a ridge relative to the base is also supported
by damag'e patterns during the 1980 Friuli earthquakes in Italy (Brambati et al., 1980) and
in the Chilean earthquake of 1985 (Celebi and Hanks, 1986). |

The effect of a topographic structure on ground motions depends on the shape ratio of
the structure and how the lateral dimensions of the structure are related to wavelengths of
the incident motions. Silva and Darragh (1989) show that over the period range of
engineering interest, 0.2 Hz to 25 Hz, the range in wavelengths is from 40 m to 5 km
assuming a sh.ear wave velocity in rock of 1 km/s. Topographical features with
characteristic dimensions in this range have the potential for a significant effect on ground

motions depending on the shape ratios.

MOTIONS IN ALLUVIAL VALLEYS

Perhaps more interesting from an engineering point of view 1s the response of
-ediment filled valleys, usually the locations of greatest development. Ground motions on
these sites generated by shear waves propagating vertically are usually estimated by 1-D
shear beam models, using either equivalent linear methods (Schnabel et al., 1972) or

~onlinear models (Finn et al.,, 1978). The sediment-basement rock interface generates
surface waves and may trap body waves in the alluvium (Finn and Nichols, 1988; Silva,
1989). These waves amplify the motion and increase the duration over that predicted by 1-
D analysis. These effects were very pronounced in the lake-bed motions in Mexico City

during the 1985 earthquake.

Bard and Gabriel (1986) calculated the transfer functions for a wide shallow sediment

filled valley (h/L < 0.25) shown in Fig. 4. The results are shown for both 2-D and 1-D
analyses with a linear gradient in shear wave velocity S with depth and for a 2-D analysis
with a constant shear modulus in the sediments. The valley has a shape ratio of 0.1. The

frequency n is normalized by the 1-D resonant frequency for the valley centre, S/4h, }vhere
h is the depth of the valley at the centre. The 1-D analysis does a very good job ot

modelling the response from station 5 on, that is just off the sloping edge of the valley but
tends to give too sharp a resonance response from the edge of the valley to station 3.

enerated near the edge are apparently damped significantly by the

time station S is reached and the remaining etfects are swamped by the incoming shear

waves. The radically different responses between stations -1 to 5 may {esult in differqntigl
motions, normal to the edge of the valley (Silva, 1989) with implications for the seismic

loading of long structures.

The surface waves g

025 show a different kind of

for a valley with shape ratio of 0.4 displays several

two associated with 1-D response. Pred_ictions of
but underpredict seriously the

Deep narrow valleys with large shape ratios h/L 2

response (Fig. 5). The amplifications
strong maxima instead of the one or
motions by 1-D analysis are conservative near the edges

response at high frequencies in the middle of the valley.
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An interesting case historv whic
e presentij ihf ?\I{}ﬁ ‘:k-hl{gh shows the engineering implications of valley effects
ssplaceme e R accioll (1991). The problem is the estimation of seismi
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expressway bridge near Belluno in North East Italy. The expressw oundation piles of an
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Fig. 6 Cross-Section at Edge ot Alluvial Valley Near Belluno, Italy (atter Faccioli, 1991).
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¢or the NS spectral ratios of 7 aftershocks (Jarpe et al, 1990). The amplification factors
are drastically reduced in the strong motion phase although still 2 or greater over a wide

frequency ba nd.

Evidence Uiﬁd hqlgﬂi!ht‘;_}ﬁ[ shift in site period during strong shaking i1s provided by data
from a Japanese SIe (Tazoh et al., 1988). Ground motions from the Kanagawa-
vamanashi earthquake of August 8, 1988, Mjya = 6.0, were recorded at an epicentral
distance of 18 km. The maximum acceleration at the ground surface was 435 g,a]f;-and 154
sals at the base layer during the main shock. The transfer functions for both weak motions
and the main shock between base and surface showed a period shift from 0.33 s for the

1e main shock. On this evidence, one should be cautious about

“.fnk {"{‘}O{‘iﬂnl‘; 1O “5 S fL"F tl
seriods of peak response deduced from low amplitude events such as MICrotremors

sité [
and coda waves. I_:l{a_m_ and Martin (1989) took this period shift into account in
—icrozoning Charleston, South Carolina on the basis of site period. They used dynamic

i< deduced from calculated 1-D strong motions.

An alternative to determining ground motion characteristics by dynamic analysis is to
..blish the parameters empirically from site response to microtremors or frequently
arring low magnitude local earthquakes. Aki and Teng (1991) used coda waves 10

actors for stations in the central California network operated

The coda waves were associated with local earthquakes

-termine site amplification {
= U.S. Geological Survey.
They found the amplification to be controlled by the

-ween magnitudes 1.8 and 3.5.
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geological age of the sediments. Amplification decreased with age from young Quaternary
to Tertiary Pliocene sediments. Presumably the stiffness of sediments increased with age.

d that the site amplification factors for strong motion response spectra
lative to rock spectra for periods longer than 0.2

d for shorter periods. The site dependent spectra
ar cross-over near the period of 0.2 seconds.

Aki (1988) foun
showed amplification factors of 2 to 3 re
seconds and that the relation was reverse
oroposed by Seed et al. (1976) showed a simil

ctors for weak motions based on coda waves did not show such a

The amplification fa
fication at all frequencies up to 12 Hz.

cross-over. The data showed consistent ampli

motion amplification factors derived from coda

Aki and Teng (1991) applied the weak .
ons recorded during the Loma Prieta

waves in fundamental studies of strong ground moti | T
earthquake in 1989. For distances less than 50 km, they found a systematic overprediction

of peak acceleration. They concluded that, depending on site and level of motion that
nonlinear effects became significant in the acceleration range 0.1g - 0.3g. The lower hmltr
agrees with the acceleration level proposed by Seed et al. (1976) as roughly the boundary

between amplification and deamplification of rock motions by surface sediments (Fig. 9).

27




ROCK
/

|
|
Stiff soil ;
2 conditions :
|
|

Deep
~cohesioniess
s0ils 1
,...SO“ tO medium |
stiff clay
and sond

O0 g1 02 0D B 09 0.0
Maximum Acceleration in Rock

Fig. 9. The Effects of Site Conditions on Ground Accelerations (after Seed et a]_ 197,
ig. 9.

Data in Fig. 9 suggest massive deamplification on soft soil sitf_:s during strong
motion. The response of the soft clays_ In .Mezuc‘o City during the 1985 Mexica
earthquake and of the soft soil sites in California durlng' the Loma Prieta earthquake
1989 changed that view dramatically. Idriss (1990) gives an updated picture of th
response of soft soil sites in Fig. 10, based on the Mexico City and Loma Prieta data

on 1-D response analyses using the SHAKE program (Schnabel et al., 1972). Mud
greater amplification is now attributed to soft soil sites
which amplification may occu

dynamic analysis in 1990 cha

used in analysis. The answer lies in a better understanding of the dynamic propertic:
soft high plasticity clays. ‘ |

—
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amplifications (Finn and Nichols, 1988). Studies of dynamic soil properties since 1985
shows that the rate of modulus degradation at a given strain level decreases with
increasing plasticity. The important lesson to be learned from the ground response in

Mexico City is that site specific properties should be used in site response analyses.

But a major problem still remains for dynamic analysis despite all the improvements
in the constitutive modelling and methods of analysis, uncertainty in the input motions.
This problem cannot be evaded by calculating average motion parameters such as average

spectra. The ground motions in Mexico City could not be simulated by following the usual
practice of inputting outcrop motions. The rock motions had no preferred direction (Fig.

11), whereas the motions at the SCT site on the lakebed has acquired a strong E-W
orientation (Fig. 12). As a result of this, to match the spectra of the E-W motions, the

rock input motions had to be increased 2.5 times (Finn and Nichols, 1988).

had similar difficulties in simulating the response spectra at the Treasure
motions from the nearby Yerba Buena site as

emanating from the rock-sediment interface
substantially underestimating the response

and Nichols, 1988).

Idriss (1990)
Island site when using the rock outcrop

input. It would seem that the motions
aCquired a directional bias that resulted In sut
Spectral ordinates as happened in Mexico City (Finn
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